脳波を測る電極の基礎と応用|配置法・新素材・ウェアラブルデバイスまで
脳波を測定するには、正確な信号を捉えるための「電極」が不可欠です。しかし、「脳波 電極」と一口に言っても、その種類や構造、配置法、使い方にはさまざまな違いがあります。さらに近年では、グラフェンやカーボンナノチューブといった新素材の電極開発や、Bluetoothでスマホに脳波を送信できるウェアラブルEEGデバイスも登場し、脳波計測技術は飛躍的に進化しています。 本記事では、脳波電極の基礎から最新技術までをわかりやすく解説し、医療・研究・日常利用まで幅広く活用できる「脳波計測の今」をお届けします。 そもそも脳波とは?計測に使われる電極の基本を解説 脳波計測と聞くと難しそうに感じるかもしれませんが、仕組みを知れば意外とシンプルです。ここでは、脳波の種類や意味をわかりやすく整理した上で、脳波を計測するために欠かせない「電極」の役割やしくみについても丁寧に解説していきます。 脳波計測について初めて学ぶ方にも理解できるように、基礎から順を追って紹介します。 脳波の種類とその意味をやさしく紹介 脳波とは、脳内の神経細胞(ニューロン)が活動するときに発する微弱な電気的活動を、頭皮上から計測した電位変化のことです。この電気活動は、神経細胞同士がやり取りする際に生じる信号の集まりとして現れ、一定のリズムやパターンを持っています。脳波は以下のような速さ(周波数)に分類され、それぞれ異なる意味合いを持ちます。 デルタ波0.5~4Hz深い眠りや無意識状態で現れる。身体の回復や脳の修復に関与。シータ波4~8Hz眠りに入る直前や深い瞑想状態で優勢。創造性や直感力に関与。アルファ波8~13Hzリラックス状態や軽い集中で観測。ストレス軽減に役立つ。ベータ波13~30Hz高い集中や警戒状態で優勢。過剰になると不安やストレスの原因に。ガンマ波30Hz以上複雑な問題解決や学習時に観測。脳の全体的な活動を統合。 これらの脳波を測定・分析することにより、脳の状態を把握したり、神経疾患の診断や研究、ブレイン・マシン・インターフェース(BMI)などの応用が可能になります。 脳波についてより詳しく知りたい方は以下の記事も合わせてご覧ください。 https://mag.viestyle.co.jp/eeg-business/ 脳波を測る電極って何?その役割と重要性を解説 脳波を正確に計測するためには、頭皮に取り付ける「電極」が欠かせません。電極は、脳内の電気信号を非侵襲的に取り出すためのセンサーであり、脳波測定の精度や再現性を大きく左右します。 電極は頭皮に密着させることで、非常に小さな電気の信号をキャッチし、それを脳波計に送って記録します。しかし、その信号は非常に微弱で、ノイズの影響を受けやすいため、電極の材質、形状、接触の安定性などが重要になります。 また、電極の配置方法や個数によって、脳波から得られる情報量や局在性が変わるため、目的に応じた適切な設置が求められます。たとえば、てんかんの発作がはじまる場所を特定する場合には、高密度な電極配置が必要になる一方、簡易的な集中力測定では少数の電極でも足りることがあります。 このように、脳波計測における電極は単なる付属品ではなく、計測精度を支える中核的な要素といえるのです。 電極装着後に行う脳波計測の手順について知りたい方は、以下の記事も合わせてご覧ください。 https://mag.viestyle.co.jp/brain-machine-interface/ 脳波電極の種類まとめ|特徴・用途・選び方がわかる! 脳波計測に用いられる電極にはさまざまな種類があり、それぞれの構造や特性、使用目的に応じて適切に選択することが求められます。ここでは、主に医療や研究現場で使用される代表的なEEG(electroencephalograph, 脳波計)の電極について解説します。 形状での区別:皿電極と針電極の違い EEGの電極は形状で二種類に大別されます。皿電極(ディスク電極)は、頭皮上に貼り付けて使用する金属製の円盤状の電極で、一般的に銀/塩化銀(Ag/AgCl)や金メッキなどの素材が使われています。 ゲルやペーストを介して皮膚と電極の間の接触を安定化させることで、脳波信号を効率よく検出できます。非侵襲的で再利用可能なため、臨床現場や研究用途で最も一般的に使用されるタイプです。 一方、針電極(ニードル電極)は、鋭利な金属針を皮膚に刺入して使用します。主に筋電図(EMG)や一部の特殊な脳波測定で使用され、外部ノイズの影響を受けにくく、高い信号精度が得られるという利点があります。 ただし、針の素材や細さによっては折れやすかったり、使用中に変形してしまうことがあるため、取り扱いや保管には注意が必要です。また、消耗品としての扱いになるケースも多く、コスト面での考慮も必要です。 このように、測定の目的や環境に応じて皿電極と針電極を使い分けることで、より適切な脳波の取得が可能になります。 接触方法での区別:ドライ電極とウェット電極の比較 形状のほかに、脳波計測時の導電方法によってもEEGの電極は区別されます。 ウェット電極は、電気を通しやすくする専用のゲルやペーストを使って皮膚に密着させるタイプです。これにより、電極と皮膚のあいだにすき間ができにくく、電気信号がスムーズに伝わるため、脳波を高い精度で測定することができます。現在の病院や研究機関では、このウェット方式が主流ですが、使用後の清掃や装着準備に時間がかかるという手間もあります。 一方、ドライ電極は導電性のある素材のみでできており、ゲルを使わずそのまま皮膚に装着できるのが特徴です。着脱が簡単で、被験者の不快感も少ないため、近年ではウェアラブル脳波計や簡易型の脳波測定機器によく使われています。ただし、皮膚との接触が不十分になると信号がうまく取れず、測定精度が下がることもあります。研究によると、最近のドライ電極技術の進展により、ウェット電極に匹敵する性能を持つものも登場しており(参考:Chi et al., 2012, IEEE Transactions on Biomedical Engineering)、今後さらに用途が広がると考えられます。 その他の電極:ECoGや深部刺激法で使われる侵襲的・半侵襲的電極 これまでご紹介したEEGの電極は、いずれも頭皮の上から脳波を測定する非侵襲的な脳波電極です。しかし、より正確かつ局所的な脳活動の観察が必要な場面では、半侵襲的あるいは侵襲的な電極が使用されることもあります。 代表的な半侵襲的電極として挙げられるのがECoG(Electrocorticography:脳皮質電図)です。ECoGは、開頭手術の際に大脳皮質の表面に直接電極を配置し、頭蓋骨の内側から脳波を計測する方法で、主に難治性てんかんの外科手術前評価などに用いられます。 ECoG電極は、薄いシリコン基板上に複数の導電パッドを備えた柔軟な構造で、脳表面に密着することで脳のどの部位がどのタイミングで活動しているのかを、細かくとらえることができます。頭皮上のEEGと比べてノイズが少なく、より正確な局所脳活動の検出が可能です。 さらに、ECoG信号を活用したブレイン・マシン・インターフェース(BMI)の研究も進んでおり、脳信号で機器を制御する技術として、運動障害をもつ患者の支援技術としての応用が期待されています。 こちらの記事ではECoGを利用したBMIの一例を紹介しています。 https://mag.viestyle.co.jp/ecog_to_voice/ 一方、侵襲的電極としては、脳深部刺激(Deep Brain Stimulation:DBS)に使用される電極があります。DBSは、脳の深部に電極を挿入し、特定の領域に電気刺激を与えることで、パーキンソン病やジストニア、重度のうつ病などの神経疾患を治療する医療技術です。 DBS用電極は、脳の視床、淡蒼球、視床下核といった脳の深い部分に細長い金属電極を挿入して用います。脳波の取得というよりも電気刺激による神経調節が目的ですが、近年では刺激と同時に脳活動をリアルタイムで記録できる双方向型DBS(closed-loop DBS)の研究も進行しており、EEGと近い役割も担いつつあります。 参考:脳深部刺激術におけるclosed-loop systemの応用と脳機能解析 このように、脳波計測に用いられる電極には非侵襲から侵襲まで幅広い種類があり、それぞれの用途や目的、精度に応じて適切に選ぶ必要があります。特に医療や先端研究では、脳のどの部位から、どれだけ精密な信号を取得したいのかによって電極の選択が大きく変わるのです。 国際的な電極の配置規則|10-20法から高密度配置までしっかり解説 脳波計測において、電極をどの位置に、どのように配置するかは、脳波の精度や解釈に大きく影響します。特に標準化された配置法は、再現性のあるデータ取得や他者との比較研究に不可欠です。本セクションでは、代表的な配置法である「国際10-20法」と、その派生である高密度配置法を紹介します。 やさしくわかる!国際10-20法の基本ルール 国際10-20法(10-20 system)は、1958年に提案された世界中の臨床・研究現場で広く採用されている標準的な電極配置法です。名前の由来は、電極同士の間隔が頭部の基準点間の10%および20%の距離で定義されていることにあります。 この方法では、前頭部(F)、頭頂部(P)、側頭部(T)、後頭部(O)など、各部位をアルファベットと数字で表記し、左右の違いを奇数(左)と偶数(右)で示します。たとえば「F3」は左前頭部、「P4」は右頭頂部の電極を指します。 10-20法の利点は以下の通りです: 頭蓋の個人差に対応できる 各電極の位置が再現性を持って決められる 世界中の研究・医療現場と互換性がある この配置法により、臨床診断(例:てんかん焦点の特定)から認知科学の実験まで幅広い用途に対応可能です。 拡張配置の基本!10%法で脳波電極をより柔軟に 引用:事象関連電位入門* - Cognitive Psychophysiology Laboratory より精密な脳波解析や、特定の脳領域にフォーカスした測定が求められる場合、10-20法だけでは対応しきれないことがあります。そうしたニーズに応える配置法のひとつが、10%法です。 10%法とは、国際10-20法の電極配置のあいだに、さらに細かく電極を追加していく柔軟性の高い拡張方式で、1991年に10-20法の拡張として提案されました。名前のとおり、頭蓋の基準点間の距離を10%ごとに区切って配置することで、より多くの位置に電極を設置でき、必要に応じて電極密度を調整することが可能です。たとえば、標準の10-20法では「Fz」「Cz」「Pz」など限られたポイントにしか電極が配置されていませんが、10%法ではその中間点にも自由に電極を追加でき、信号の空間的な補間精度を高めることができます。 脳波電極の正しい装着方法とトラブルを防ぐポイント 脳波測定の正確性を確保するためには、電極の正しい装着と定期的なメンテナンスが不可欠です。不適切な装着はノイズの原因となり、測定結果に重大な影響を及ぼします。このセクションでは、電極の装着手順とメンテナンスの基本について解説します。 脳波測定前に行うべき皮膚の下処理とは? 脳波測定において最も基本的かつ重要な工程が、電極の正確な装着です。以下は一般的な装着手順の流れです: 皮膚の前処理電極と皮膚の間の接触インピーダンス(電気の流れにくさ)を下げるため、アルコール綿や軽い研磨剤(スキンプレップ)を用いて頭皮を清潔にし、角質を除去します。 導電性ペーストやゲルの塗布ウェット電極の場合は、電極表面と頭皮の間に導電性ペーストまたはゲルを塗布します。これにより信号の安定性が大きく向上します。 正確な位置への配置10-20法などの基準に従って電極を配置します。専用の計測テープやEEGキャップを活用すると、より精密に位置決めが可能です。 電極の固定電極がズレないようにテープやキャップ、粘着シートなどを使ってしっかりと固定します。特に長時間の測定では安定性が重要です。 このような装着手順を守ることで、測定中のアーチファクト(脳波以外のノイズ信号)を大幅に減少させることができます。 信号が取れない?正しいメンテナンスでトラブルを回避 装着後や使用後の電極は、適切にメンテナンスを行うことで長寿命化し、信号品質も保てます。 使用後の清掃電極に残ったゲルや皮脂などは、流水と中性洗剤で丁寧に洗い流します。銀/塩化銀電極は腐食しやすいため、強アルカリ洗剤や漂白剤の使用は避けましょう。 保管方法洗浄後は乾燥させてから、湿気の少ない冷暗所で保管します。Ag/AgCl電極の場合は、暗所保存が腐食防止に有効です。 接触不良への対処測定中に信号が不安定な場合は、インピーダンスを再確認し、ペーストの再塗布や固定の再調整を行います。また、配線の断線や接続ミスもチェックが必要です。 定期的な点検電極の表面に傷や劣化が見られた場合は交換を検討します。特に金属被膜が剥がれている場合は正確な計測が難しくなります。 これらの管理を怠ると、脳波計測の品質が低下するだけでなく、被験者への不快感やトラブルの原因にもなります。継続的な管理とメンテナンス体制の整備が、安全かつ信頼性の高い測定に不可欠です。 進化する脳波電極!素材・構造・デバイスの最前線を解説 脳波計測技術は、近年急速な進歩を遂げており、電極の素材・構造・デバイス形態において多くの革新が見られます。本セクションでは、電極技術に関する最新の研究や、ウェアラブルEEG機器の発展について解説します。 注目の新素材:次世代脳波電極の最新研究を紹介 従来の脳波電極には、銀/塩化銀(Ag/AgCl)や金メッキなどの金属素材が使われてきました。これらは導電性に優れる一方で、長期間の使用による腐食や、柔軟性に乏しいことによる装着の不快感といった課題がありました。 近年では、こうした問題を克服し、柔軟性・生体適合性・長期耐久性に優れた次世代素材を使った脳波電極の研究が進められています。代表的な例として以下の3つの素材が注目されています。 グラフェン原子レベルの薄さを持つ炭素素材で、非常に柔らかく、導電性が高いのが特徴です。皮膚にぴったりとフィットしやすく、長時間装着しても違和感が少ないため、ウェアラブルEEG用途に最適です(参考:ScienceDirect, 2023)。 カーボンナノチューブ(CNT)極めて細かいチューブ状の炭素構造で、電極表面に使うことで皮膚との接触面積が広がり、電気信号が通りやすくなる(低インピーダンス)という利点があります。これにより、ノイズが少なく高精度な脳波測定が可能になります(参考:Nature Electronics, 2022)。 導電性高分子(PEDOT:PSSなど)ポリマー系の導電材料で、布やゲルに染み込ませることで柔らかく伸縮性のある電極が作れます。皮膚へのなじみが良く、長時間の装着でもかぶれにくいため、生体信号の長期モニタリングに適しています(参考:Nature Microsystems & Nanoengineering, 2024)。 これらの素材は、従来の金属電極では難しかった「快適さ」と「高性能」の両立を可能にし、医療・研究・日常用途を問わず、新しい脳波計測の形を切り拓く技術として注目されています。 日常に溶け込むEEG:ウェアラブルEEGデバイスの進化 EEG(脳波計測)をより手軽に行えるようにするためのウェアラブルデバイスも、目覚ましい進化を遂げています。特にドライ電極や柔軟基板技術の進展により、「装着が簡単」「日常生活中の計測が可能」という特徴を持った製品が多数登場しています。 代表的な例には以下があります: イヤホン型EEG(in-ear EEG):見た目は普通のイヤホンのような形状で、耳の中に電極を配置して脳波を測定するタイプのデバイスです。最近では音楽再生機能と組み合わせたモデルも登場しており、リラクゼーションや集中力の測定にも活用されています。(例:VIE, Inc., CyberneXなど)。 ヘッドバンド型EEG:額や側頭部に簡単に装着できるタイプで、瞑想、集中力測定、睡眠解析などに活用されています(例:Muse, NeuroSkyなど)。 完全ワイヤレス型EEG:Bluetooth通信によってデータをスマートフォンやPCに送信できます。リアルタイム解析やクラウド保存にも対応しています(例:Emotiv, Neurable)。 これらの技術により、脳波計測の活用範囲は医療や研究の枠を超え、スポーツ、教育、エンターテインメント領域にも拡大しています。 さらに、機械学習やAIとの組み合わせにより、脳波データのリアルタイム解析やパーソナライズドな脳波評価が実現されつつあります。 まとめ:脳波計測に必要な電極の基礎と最新動向を押さえよう 脳波を正確に測定するためには、適切な電極の選び方と使い方がとても重要です。この記事では、「脳波 電極」に関する基本的な知識から、皿電極・針電極・ドライ電極・ウェット電極などの特徴や使い分けまでを詳しく解説しました。 さらに、国際10-20法をはじめとした電極の配置方法や、装着・メンテナンスのポイントも紹介。近年はグラフェンやカーボンナノチューブといった新素材電極や、ウェアラブルEEGデバイスの進化も進んでおり、脳波測定の未来は大きく広がっています。 「脳波 電極」について正しく理解し、目的に合った選択と運用ができれば、医療現場はもちろん、研究やライフスタイル領域でも大きな価値を発揮するはずです。