脳活動の共通パターンを探る──最新研究が見せた幾何学的アプローチ

「脳はどんな風に動いているのか」という問いに対して、これまで私たちは波形や数値で説明してきました。脳波計で測定すれば、ゆらめく線がモニターに映し出され、それをアルファ波やベータ波といったリズムで分類する方法が一般的でした。

しかし2024年9月に発表された研究が示したのは、もっと直感的で視覚的な答えです。脳の活動を多次元空間にマッピングすると、そこには共通して現れる基本の「型」が浮かび上がってきました。研究者たちはこれを「脳の動きを支える幾何学的な土台」と呼んでいます。

脳の活動を立体的に映し出す「スペクトルアトラクタ」

脳波には、アルファ波やベータ波などの周期的なリズム成分と、特定の周波数を持たない非周期的な背景成分(いわゆる1/fゆらぎ)が含まれています。従来の脳波研究では、これら周波数ごとの強さ(パワー)やリズムの同期性を分析し、脳の状態を探ってきました。

しかし、今回の研究チームは発想を転換し、脳波データの「形そのもの」を追いかけました。具体的には、まず脳波を周波数ごとに分け、それぞれの強さが時間とともにどう変化するかを取り出し、その動きを多次元空間に写し込みました。すると、点が集まって軌跡を描くようにまとまりが現れます。このまとまりは「アトラクタ」と呼ばれ、脳の活動を単なる波形ではなく立体的な形として表すことができるのです。

アトラクタとは、時間が経つにつれてシステムの動きが収束していく軌道のパターンのことを指します。たとえば振り子は最後に止まって一点に落ち着きますし、気象のような複雑な現象では蝶が羽ばたくような軌跡(ローレンツ・アトラクタ)が現れることがあります。では、脳波をアトラクタとして描くと、どのような形になるのでしょうか。図1がその結果です。

図1:EEGスペクトル・アトラクタの例(論文Figure 1より)
(A) 若年層(黒)と高齢層(灰色)の平均脳波スペクトル。太い線は背景的な非周期成分を示す。 (B) 各周波数帯の強さ(色付き)と背景成分(緑)。 (C) 周波数ごとの強さの時間変化。 (D) 従来法で再構成した高次元アトラクタ(黒い軌跡)。 (E) 新手法(ETD)で主要成分に投影したアトラクタ。アルファ波や非周期成分はシンプルな軌道を描く一方、デルタ波やガンマ波は複雑でねじれた形になる。

このように脳波信号を「軌道=形」として表現することで、脳の状態を幾何学的に分析できるようになります。研究チームは、各アトラクタの形の複雑さ(次元数)を「幾何学的複雑度」と定義し、さらに異なるアトラクタ同士の形の類似性・予測関係を解析しました。

この解析には、収束的相互マッピングと呼ばれる手法が用いられています。難しい名前の手法ですが、簡単に言えば「ある軌道の動きから別の軌道をどの程度予測できるか」を調べるものです。こうした新しいアプローチによって、脳波の奥には共通する「型」のような動きが潜んでいることが見えてきました。

脳波の土台をつくるアルファ波と1/fゆらぎ

脳波と聞いて多くの人が真っ先に思い浮かべるのは「アルファ波」ではないでしょうか。リラックス時に優勢になる8〜12Hz程度の波で、「閉眼時に現れるα波」は昔から知られています。参考:脳波で変わる日常生活!アルファ波(α波)の科学的効果とは

一方で、近年注目されているのが、1/fに近い傾きを持つ非周期的な背景成分です。このゆらぎは、脳の興奮度や覚醒度といった状態と関連している可能性が指摘されており、新たな脳活動の指標として研究が進められています。

今回の研究では、この非周期成分とアルファ波が、脳波ダイナミクスを支える中心的な役割を担っていることが明らかになりました。

解析の結果、アルファ波と非周期的なゆらぎから描かれるアトラクタは、とてもシンプルな形をしていました。さらに、その基本的な形は他のすべての周波数帯にも共通して見られたのです。つまり、複雑に見える脳波の動きの奥には、アルファ波と非周期成分がつくる共通の「型」があり、それが全体を支えていることが分かってきました。

研究チームは、アルファ波と非周期成分を脳活動の中心的なダイナミクスと位置づけました。これらは常に揺らぎながら全体をまとめる土台のような存在で、その上に他の複雑な活動が積み重なっていくと考えられます。例えるなら、オーケストラで常に響いている低音のベースのようなもので、派手に主張するわけではないけれど、全体の調和とリズムを支えている存在です。

興味深いことに、従来の線形解析では周波数帯同士の相関はごく一部(例:アルファとベータ間)でしか強くありませんでした。しかしこの幾何学的アプローチでは、アルファ波と非周期成分が全ての周波数帯と強い結びつきを示すことが分かりました。

脳内の信号同士がどのように影響し合っているかを見る新たな指標として、この「幾何学的クロスパラメータ結合(異なる周波数帯同士の結合)」は非常に有望と言えるでしょう。

加齢がもたらす脳のシンプル化

では、この幾何学的コアは年齢によって変化するのでしょうか。研究では、20代前後の若年成人138名と、60代前後の高齢成人63名を対象に、安静時の脳波データが比較されました。

その結果、高齢者では若年者に比べてアトラクタの幾何学的複雑度が全体的に低下していることが明らかになりました。つまり、脳波の軌跡を表現するために必要な次元の数が減り、全体として脳の動きがよりシンプルになる傾向が見られたのです。

一方で、異なる周波数帯同士の結びつき(クロスパラメータ結合)は、高齢者の方が強まる傾向にあることも分かりました。その背景には、加齢に伴い、脳の機能的な専門性(分化)が低下することが示唆されています。

今回の研究で観察された、ガンマ波の活動パターンが他の周波数帯と似通ってくる傾向は、この加齢に伴う脳の機能変化の一端を捉えているのかもしれません。

この発見は、脳の加齢に伴う機能変化を新たな視点で捉えるものです。高齢になると情報処理が遅くなったり柔軟性が低下したりすると言われますが、その一因として脳のダイナミクスの多様性(複雑さ)が減少し、柔軟性が失われることが示唆されています。

一方で、アルファ波や非周期成分といったコアの影響力が相対的に強まることは、脳が安定性を保とうとする一種の適応かもしれません。研究者たちは、この結果を「動的コア仮説」と呼ばれる考え方と関連づけています。これは、脳には統合と分化を同時に支える中心的な仕組みがあるという理論です。

今回の研究は、この理論を踏まえ、脳が発達や加齢に応じて、大きな枠組みから細かな構造へと形作られていく過程を説明する新しいモデルとして位置づけられました。

脳波の軌跡から見える意識のパターン

では、この幾何学的コアと私たちの意識状態や思考の内容には、どのような関係があるのでしょうか。脳波の複雑さは、昔から意識の深さや種類と関わっていると考えられてきました。たとえば、覚醒しているときと眠っているときでは、脳信号の複雑さが大きく異なります。今回の研究でも、このつながりを裏付けるような興味深い結果が示されています。

被験者は別日に実施したfMRIセッションで、「ニューヨーク認知質問票」というアンケートに回答しており、自分の心が安静時にどんな内容(過去や未来のこと、ポジティブなこと・ネガティブなことなど)や形式(映像的か言語的か、曖昧かはっきりしているか)をさまよっているかを自己評価しました。

そのデータとEEGアトラクタの複雑度を照らし合わせたところ、ある周波数帯の複雑さだけが特定の思考内容と有意に関連していたのです。それはガンマ帯のアトラクタの複雑さで、これが高い人ほど「ネガティブな反すう的思考」傾向が強いことが示されました。

ガンマ波は集中や認知負荷と関係が深いとされますが、確かに悩み事などで頭がぐるぐるしているとき、脳は高速で複雑な活動をしているのかもしれません。逆に、マインドフルネス瞑想などで心が静まっている状態では、ガンマ活動が抑えられ、より低周波側が優勢になるという報告もあり、この結果は直感的にも頷けるものになっています。

他にも興味深い傾向として、高齢者では非周期成分アトラクタの複雑さが高い人ほど、ポジティブな内容や映像的な思考をしている傾向が見られました。一方、若年者ではそういった相関は明確でなく、年齢による違いも示唆されています。

これらの結果はまだ探索的な段階ですが、脳波の描く形からその人の内的な思考の傾向が読み取れる可能性を示しており、非常に興味深いポイントです。

まとめ:脳波の形に隠されたメッセージ

今回の研究は、脳波を「形」として読み解く新しい視点を示しました。アルファ波と1/fゆらぎが全体を支えるコアとして働き、加齢によりそのダイナミクスがシンプルになること、さらに脳波の形が思考の内容と結びつく可能性があること。どれも脳の奥深さを改めて感じさせる発見と言えるでしょう。

脳科学の世界ではしばしば、「意識とは脳内の統合と分化の産物だ」と語られますが、本研究はその考えを裏付ける幾何学的な証拠を提示したとも言えます。

もちろん、今回の成果は安静時のデータに基づいたものであり、因果関係や細かな仕組みについては今後の研究に委ねられます。それでも、古くから使われてきた脳波という手法に新しい視点を与え、脳の動きを形として「見る」試みに挑んだこと自体に大きな価値があります。

脳のリズムを単なる波としてではなく、奥に潜む形や構造として捉える発想は、これからの脳科学やニューロテックの可能性を広げていくきっかけになるかもしれません。

この技術は、将来的には意識レベルの評価や神経疾患の診断などに応用できる可能性も秘めており、ニューロテック分野に新たなインスピレーションを与える研究と言えそうです。

今回紹介した論文📖

Parham Pourdavood, Michael Jacob (2024). EEG spectral attractors identify a geometric core of brain dynamics. Patterns, 5(9): 101025. https://www.cell.com/patterns/fulltext/S2666-3899%2824%2900158-2

WRITER

Sayaka Hirano

Sayaka Hirano

BrainTech Magazineの編集長を担当しています。
ブレインテックとウェルビーイングの最新情報を、専門的な視点だけでなく、日常にも役立つ形でわかりやすく紹介していきます。脳科学に初めて触れる方から、上級者まで、幅広く楽しんでもらえる記事を目指しています。

一覧ページへ戻る